建模与实验验证:
(1) 业界多为稳态数据模型分析,动态系统环境下的耦合问题一直是业界难题
(2) 齿轮振动信号是齿轮箱故障的载体,齿轮箱中齿轮轴,齿轮和和轴承工作是会产生振动,若出现故障其振动能量会发生变化。对齿轮箱振动信号进行时域和频域分析与标准振动信号进行对比。
(1) 不确定性模型
(2) 建模假设的不确定度
(3) 模型材料数据的不确定性
(4) 模型输入的不确定性
(5) 实际测量的不确定性
船舶柴油机校中状态:主要包括轴系校中计算,轴系校中工艺,轴系校中
涉及柴油机厂初步设计(轴系校中设计)造船厂安装调试(轴系校中工艺)船级社审图交验(审批轴系校中计算书及有关图纸签发轴系校中交验报告)
船舶柴油机推进轴系振动状态:主要包括:扭转振动计算与均衡,轴系回旋振动计算,轴系纵向振动,涉及柴油机厂:初步设计与计算书(轴系振动计算书柴油机扭振测试报告)造船厂安装调试(轴系减震隔振工艺书与振动测试报告)船级社审图交验;
软件提供3d建模环境,可快速准确的对用户所设计的轴系建模。所创建的模型可由多个轴系、发动机曲轴、变速箱,固定或可调螺旋桨,艉轴管,支架,不同类型的法兰和轴承组成。该模块创建的模型是支撑后续各类计算的基础,创建好的模型可以直接保存在模型库中,可供随时调用。
在早期的研究中,船体被视为弹性梁,根据装载状态判断船体变形方向,并按照线---估算船体
变形值,这种方法过于简化和粗糙。国外部分船级社通过测量大量实船船体变形数据建立船体变形数据
库,从而为轴系校中提供参考,这种方法在大型散货船和油船的轴系校中计算中应用比较广泛。但是,由
于不同船型的轴系变形趋势并不相同,且对所要研究的大型液化(liquefied natural gas,lng)船
缺少足够的测量样本,因此该方法不具可行性。有些研究者[7]通过建立机舱和艉部有限元模型来求解船体
局部变形,但结果表明船体模型的范围和边界条件对计算结果影响较大,且目前还未对适用于轴系对中船
体变形分析的艉部模型提出一个合适的边界条件。
轴系按轴承合理负荷校中
合理校中是通过校中计算确定各轴承合理位置,满足
各轴承上负荷合理分配。此方法优点是在船轴系技术设计阶
段介入校中计算,实现轴系结构设计与校中的紧密结合,能
较好地---轴系各轴承负荷情况及尾轴轴管轴承负荷情况。
进行轴系合理校中计算时,船舶推进轴系扭转振动计算技术咨询服务,将轴系视为刚性铰链支座
的连续梁,求各支座反力、截面弯矩以及挠度等参数。目
前已应用三弯矩法与迁移矩阵法,按理论求取各项参
数的合理值。轴系各轴段直径不同,校中计算时应计及各
轴段截面变化的影响。
轴系校中计算要求主要内容是进行轴系结构要素处理
的关键,需要根据给定约束条件,确定轴承的位置。
船舶推进轴系回旋振动计算技术开发-欧普兰(在线咨询)由北京欧普兰科技有限公司提供。北京欧普兰科技有限公司(www.oplantech.com)拥有---的服务与产品,不断地受到新老用户及业内人士的肯定和---。我们公司是商盟会员,---页面的商盟图标,可以直接与我们人员对话,愿我们今后的合作愉快!
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz311465.zhaoshang100.com/zhaoshang/210877665.html
关键词: