2海洋工程船推进轴系安装工艺
轴系拉线
减速齿轮箱的连接由低速轴及高速轴连接来实现,在输入
及输出时,减速齿轮箱会出现与中心距相偏离情况。在拉线期
间,不仅需要做好尾轴轴系的中心线校对工作外,应需要做好
主机机座中心线的校对工作,以便能够清晰了解到主机、消防
泵组及中间轴承之间的关系。应---左右舷轴系应保持在同一
平面上,两个轴之间彼此相互平行,与船体中心线相平行。
低速轴安装
低速轴的安装工作需要在轴系拉线结束之后进行,同时还
需要---船台镗孔的定位工作,应---轴承、浆毂、尾柱、人
字架等部件能够与轴系的中心线相重合,进而---尾轴管能够
与轴系的中线相重合。因此,在船台镗孔及前后轴承中心位置
在确定之后,需做好轴段的安装工作,---螺旋桨、尾轴密封
装置、尾管前后轴承各项安装工作的合理性。需要预先在尾轴
管内安装尾轴管轴承,安装工作也可选择在尾轴管轴承在安装
到船体之后进行。当尾轴管安装工作结束后,将尾轴管插入到
船体毂孔之后,再使用液压千斤顶,施加压力从尾轴关断进行,
在轴系的理论中心线上进行尾管前后轴承的安装,锁紧需使用
螺母。
齿轮箱安装
低速及高速轴的校中工作需要分别进行,为了---各个轴
段之间均能够保持的受力状态,应---输入及输出轴之间
会产生不同的变位值。在对齿轮箱进行定位时,应明确输入与
输出轴之间会产生不同的变位值,以确定轴系受力状态的合理
性。当齿轮箱输出轴的变位在进行低速轴安装工作时,在对输
入轴的前后轴承位置进行确认时,应根据高速轴段的校中结果
来决定。在对齿轮箱进行定位时,需要根据法兰的曲折及偏移
来完成对齿轮箱的定位工作,当定位工作结束后,在对齿轮箱
进行固定。
利用向后喷射水生推力的原理,使舰船按要求运动。一种推进船的方法。装在船上的水泵或其他设备将水向后喷出,利用其反力推船前进。
喷水推进装置是一种新型的特种动力装置 ,与常见的螺旋桨推进方式不同,喷水推进的推力是通过推进水泵喷出的水流的反作用力来获得的,并通过---舵及倒舵设备分配和改变喷流的方向来实现船舶的---。在滑行艇、穿浪艇、水翼艇、气垫船等中、高速船舶上得到了应用。
优点
(1)喷水推进装置在加速和制动性能方---有和变距螺旋桨相同的性能,喷水推进船舶具有的高速机动性,在回转时喷水推进装置产生的侧向力可使回转半径减小。
(2)喷水推进船舶舱内噪声和振动较小,比具有螺旋桨的船舶低(7-10)db(a)。
(3)吃水浅、浅水效应小、传动机构简单、附件阻力小、保护性能好。
(4) 日常保养及维护较为容易。
缺点
(1) 舰船航速较低时(低于20kn时),喷水推进的效率比螺旋桨要低一些。
(2)由于增加了管路中水的重量,导致航行器的排水量增大(通常占全船排水量的5%左右),效率有所降低。进水口损失的功率约占主机总功率的7%~9%。
(3)在水草或杂物较多的水域,进口容易出现堵塞现象而影响舰船的航速。
(4)机械传动机构仍然比较复杂,体积庞大。由于增加了外壳体的保护,推进泵叶轮的拆换比螺旋桨复杂。
(5)在航行过程中产生的空气辐射噪声仍较大。
(6)推力矢量化程度低,---在航行器转弯时其推力会丧失。
(7)缺乏一套操作灵敏、水动力学---异的倒车装置。
(8)喷水推进器的浅吃水航行带来了在沙砾较多的水域中碎石和沙砾吸入系统的风险
轴对中计算的目的是在对中时确定轴线轴承的位置,或优化轴线的轴承负荷,从而让船舶推进系在所有运行条件下安全运行。轴线轴承轴的位置由轴承衬套中心点的垂直与水平偏距以及基准线和轴承衬套轴之间的角度所决定。软件运行时,会自动计算轴线的偏差(图3)。
图3:轴承衬套中的接触应力
应用模型可自动从基本模型之上构建。基本模型中的任何改动都会立即更新轴线的偏差。由sd支持的轴对中技术包括直接计算、偏距探索、几何对中、悬链线对中和应变仪对中。由于软件具有反向工程功能,因此也可以根据已测量的弯曲负荷、轴承应力、千斤顶负荷、松垂与间歇,以及轴偏差来计算对中。
应用模型可以进一步开发,以满足具体的应用要求。用户可以增加额外的对象,中间轴承对中计算,例如集中力、临时支架和千斤顶,从而在实践中验证理论对中。一旦增加额外的支架和力,就会立即自动进行轴线偏差的重新运算。
应变计测量纵向振动计算-欧普兰()由北京欧普兰科技有限公司提供。应变计测量纵向振动计算-欧普兰()是北京欧普兰科技有限公司(www.oplantech.com)升级推出的,以上图片和信息仅供参考,如了解详情,请您拨打本页面或图片上的联系电话,业务联系人:刘总。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz311465.zhaoshang100.com/zhaoshang/205715954.html
关键词: